Stability of the Prékopa-Leindler inequality for log-concave functions

نویسندگان

چکیده

A stability version of the Prékopa-Leindler inequality for log-concave functions on Rn is established.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Pólya-szegő Inequality for Log-concave Functions

A quantitative version of Pólya-Szegő inequality is proven for log-concave functions in the case of Steiner and Schwarz rearrangements.

متن کامل

Logarithmic Sobolev inequality for log-concave measure from Prékopa-Leindler inequality

We develop in this paper an amelioration of the method given by S. Bobkov and M. Ledoux in [BL00]. We prove by Prékopa-Leindler Theorem an optimal modified logarithmic Sobolev inequality adapted for all log-concave measure on Rn. This inequality implies results proved by Bobkov and Ledoux, the Euclidean Logarithmic Sobolev inequality generalized in the last years and it also implies some convex...

متن کامل

Stability of the Prékopa-Leindler inequality

We prove a stability version of the Prékopa-Leindler inequality. 1 The problem Our main theme is the Prékopa-Leindler inequality, due to A. Prékopa [14] and L. Leindler [13]. Soon after its proof, the inequality was generalized in A. Prékopa [15] and [16], C. Borell [7], and in H.J. Brascamp, E.H. Lieb [8]. Various applications are provided and surveyed in K.M. Ball [1], F. Barthe [5], and R.J....

متن کامل

The Steiner Symmetrization of Log–concave Functions and Its Applications

In this paper, we give a new definition of functional Steiner symmetrizations on logconcave functions. Using the functional Steiner symmetrization, we give a new proof of the classical Prékopa-Leindler inequality on log-concave functions.

متن کامل

Wasserstein Stability of the Entropy Power Inequality for Log-Concave Densities

We establish quantitative stability results for the entropy power inequality (EPI). Specifically, we show that if uniformly log-concave densities nearly saturate the EPI, then they must be close to Gaussian densities in the quadratic Wasserstein distance. Further, if one of the densities is log-concave and the other is Gaussian, then the deficit in the EPI can be controlled in terms of the L-Wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2021

ISSN: ['1857-8365', '1857-8438']

DOI: https://doi.org/10.1016/j.aim.2021.107810